Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Environ Sci Technol (Tehran) ; : 1-16, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-20237633

ABSTRACT

Amid COVID-19, world has gone under environmental reformation in terms of clean rivers and blue skies, whereas, generation of biomedical waste management has emerged as a big threat for the whole world, especially in the developing nations. Appropriate biomedical waste management has become a prime concern worldwide in the pandemic era of COVID-19 as it may affect environment and living organisms up to a great extent. The problem has been increased many folds because of unexpected generations of hazardous biomedical waste which needs extraordinary attentions. In this paper, the impacts and future challenges of solid waste management especially the biomedical waste management on environment and human beings have been discussed amid COVID-19 pandemic. The paper also recommends some guidelines to manage the bulk of medical wastes for the protection of human health and environment. The paper summarizes better management practices for the wastes including optimizing the decision process, infrastructure, upgrading treatment methods and other activities related with the biological disasters like COVID-19. As achieved in the past for viral disinfection, use of UV- rays with proper precautions can also be explored for COVID-19 disinfection. For biomedical waste management, thermal treatment of waste can be an alternative, as it can generate energy along with reducing waste volume by 80-95%. The Asian Development Bank observed that additional biomedical waste was generated ranged from 154 to 280 tons/day during the peak of COVID-19 pandemic in Asian megacities such as Manila, Jakarta, Wuhan, Bangkok, Hanoi, Kuala Lumpur.

2.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1884289

ABSTRACT

With the outbreak of the COVID-19 pandemic, textile laundering hygiene has proved to be a fundamental measure in preventing the spread of infections. The first part of our study evaluated the decontamination efficiency of various treatments (thermal, photothermal, and microwave) for bio contaminated textiles. The effects on textile decontamination of adding saturated steam into the drum of a household textile laundering machine were investigated and evaluated in the second part of our study. The results show that the thermal treatment, conducted in a convection heating chamber, provided a slight reduction in efficiency and did not ensure the complete inactivation of Staphylococcus aureus on cotton swatches. The photothermal treatment showed higher reduction efficiency on contaminated textile samples, while the microwave treatment (at 460 W for a period of 60 s) of bio contaminated cotton swatches containing higher moisture content provided satisfactory bacterial reduction efficiency (more than 7 log steps). Additionally, the treatment of textiles in the household washing machine with the injection of saturated steam into the washing drum and a mild agitation rhythm provided at least a 7 log step reduction in S. aureus. The photothermal treatment of bio contaminated cotton textiles showed promising reduction efficiency, while the microwave treatment and the treatment with saturated steam proved to be the most effective.


Subject(s)
COVID-19 , Steam , Decontamination/methods , Humans , Microwaves , Pandemics , Staphylococcus aureus , Textiles
3.
Heat Transfer ; n/a(n/a), 2022.
Article in English | Wiley | ID: covidwho-1850059

ABSTRACT

In the COVID-19 pandemic, control of airborne virus transmission is exceptionally challenging as it is attached to suspended particles in the air and stays for an extended time. Air contaminated with airborne viruses holds a substantial risk for household transmission. In this study, a novel thermal treatment system is modeled based on porous heating for the decontamination of airborne SARS-Cov-2. The model includes an air heating domain, insulated chamber, buffer tank and heat exchanger. The airborne SARS-Cov-2 is decontaminated when passing through a porous heat pipe and the insulated chamber for an anticipated dwelling period of more than 5?min at 105°C and further stored in a buffer tank for natural cooling. The obligatory decontaminated air is allowed in the residential space under ambient conditions passing through a heat exchanger. The numerical investigation of the porous pipe model at different L/D ratios with altered porosities aims to establish the best-performing porous domain. Besides this, the buffer tank is intended to maintain buffer storage of the treated air and significant natural cooling before passing to the heat exchanger. A solar PV module is proposed to meet the prerequisite energy requirements of the equipped devices.

4.
J Hazard Mater ; 425: 128037, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1575585

ABSTRACT

High contents of heavy metals and Cl are major challenges for incineration residue disposal. Classification by the Chinese government and the coronavirus disease 2019 pandemic have changed the characteristics of incineration residues, thereby increasing the difficulty of disposal. In this study, medical waste incineration fly ash (MWI FA) was proposed as an additive to promote chlorination volatilization of heavy metals from municipal solid waste incineration fly ash (MSWI FA) and medical waste incineration slag (MWI S). When the mixing ratio of MWI FA to MSWI FA was 1:3, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1000 °C for 60 min were 50.2%, 99.4%, 99.7%, and 97.9%, respectively. When MWI FA was mixed with MWI S at a ratio of 1:1, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1200 °C for 40 min were 88.9%, 99.7%, 97.3%, and 100%, respectively. Adding MWI FA can replenish Cl in MSWI FA and MWI S while increasing the surface area and forming pore structures by sublimation of NaCl and decomposition of CaSO4, or can reduce the melting point and viscosity by Na2O destroying the glass matrix. Therefore, MWI FA can be co-disposed with MSWI FA and MWI S respectively to enhance the chlorination volatilization of heavy metals.


Subject(s)
COVID-19 , Medical Waste , Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Halogenation , Humans , Incineration , Metals, Heavy/analysis , Particulate Matter , SARS-CoV-2 , Solid Waste , Volatilization
5.
Diagn Microbiol Infect Dis ; 101(4): 115519, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1370491

ABSTRACT

To improve laboratory safety we thermally treated naso-oropharyngeal samples before testing with the cobas SARS-CoV-2 assay. This study aimed to determine if thermal treatment significantly affects the qualitative detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the quantitative measurement of cobas SARS-CoV-2 ORF1a and E-gene target copy number using an in-house quantitative method. A collection of positive (n = 238) and negative samples (n = 196) was tested in parallel comparing thermal treatment (75 °C for 15 minutes) to room-temperature. There were no significant differences in the final qualitative outcomes for thermal treatment versus room-temperature (99.8% agreement) despite a statistically significant reduction (P < 0.05) in target copy number following thermal treatment. The median ORF1a and E-gene reduction in target copy number was -0.07 (1.6%) and -0.22 (4.2%) log10 copies/mL respectively. The standard curves for both ORF1a and E-gene targets were highly linear (r2 = 0.99). Good correlation was observed for ORF1a (r2 = 0.96) and E-gene (r2 = 0.98) comparing thermal treatment to room-temperature control.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Hot Temperature , Humans , RNA, Viral/isolation & purification , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL